
//define rochcor.h in your analysis header file, for example, in Anal.h
#include <rochcor.h>

//===

//In your analysis code (Anal.C),

void Anal::main()
{

 if (fChain == 0) return;
 Double_t nentries = Double_t(fChain->GetEntries());

//To get the central value of the momentum correction
 rochcor *rmcor = new rochcor(); // make the pointer of rochcor class

//REMARK : Need to call "rochcor(seed)" to assign the systematic error
 rochcor *rmcor = new rochcor(seed); //where "seed" is the random seed number

 //for-loop of the event
 for (Int_t k=0; k<nentries; ++k){
 fChain->GetEntry(k);

 TLorentzVector mu; //TLorentzVector of the reconstructed muon

 //Set TLorentzVector of mu, and mubar
 mu.SetPxPyPzE(...);
 //assign pt error of muon object (if you don't need this variable, just set "1.0")
 float qter = pt_error;

 //If you run MC, apply the muon momentum correction,"momcor_mc()" function (only for MC)
 rmcor->momcor_mc(mu, charge, sysdev, runopt, qter);
 // This is for MC,
 // TLorentzVector, mu, corresponds to mu- for charge = -1 or mu+ for charge = +1
 // sysdev == 0 returns the central value of muon momentum correction
 // sysdev == 1 returns the muon momentum correction smeared 1 standard deviation
 // in <1/pt> correction
 // (global factor is also changed by 1 sigma total error (stat ⊕ syst)
 // If you want to assign the systematic error using x standard (statistical) deviation,
 // you can assign sysdev == x.
 // runopt == 0 for 2011A correction
 // runopt == 1 for 2011B correction
 // Remark : Before extracting the muon momentum correction, MC is tuned for the efficiencies
 // extracted from 2011A and 2011B data, respectively.
 // The corrected MC is used to extract the muon momentum correction for 2011A and
 // 2011B, separately.
 // In addition, the extra smearing is applied into MC to have better match with each
 // data set (A or B) in mass distribution.
 // Therefore, MC also has "runopt" option regarding to 2011A and 2011B period.

 //If you run data, apply the muon momentum correction, "momcor_data()" function (only for Data)
 rmcor->momcor_data(mu, charge, sysdev, runopt, qter);
 // This is for data,
 // TLorentzVector, mu, corresponds to mu- for charge = -1 or mu+ for charge = +1
 // sysdev == 0 returns the central value of muon momentum correction
 // sysdev == 1 returns the muon momentum correction smeared 1 standard deviation

 // in <1/pt> correction
 // (global factor is also changed by 1 sigma total error (stat ⊕ syst)
 // If you want to assign the systematic error using x standard (statistical) deviation,
 // you can assign sysdev == x.
 // runopt == 0 for 2011A correction
 // runopt == 1 for 2011B correction

 //If you apply MuscleFit correction in data, you can use "musclefit_data(…)" function defined rochcor
package.
 rmcor->musclefit_data(mu, mubar);

 //Apply Z pt correction only for MC
 float zptwt = momcor->zptcor(genZpt); // genZpt is the generated Z Pt,
 // zptwt is the event weighting factor for Z pt correction

 }
}

//In Root, compile "rochcor.C" before compiling your analysis code
root -l
.L rochcor.C+ // compile "rochcor.C"
.L Anal.C+ // compile your analysis code, "Anal.C"
Anal pf // running the main function
pf.main()

REMARK : For systematic uncertainty, MC and Data reconstruction level is independent each other.
 So, you have to assign the systematic uncertainty for MC and Data independently and
 then estimate the systematic uncertainty on your measurement at the end.

